
A Distributed Memory Unstrutured Gauss-Seidel Algorithm forMultigrid SmoothersMark F. Adams �November 19, 2001AbstratGauss-Seidel is a popular multigrid smoother as it is provably optimal on strutured grids and exhibitssuperior performane on unstrutured grids. Gauss-Seidel is not used to our knowledge on distributedmemory mahines as it is not obvious how to parallelize it e�etively. We, among others, have found thatKrylov solvers preonditioned with Jaobi, blok Jaobi or overlapped Shwarz are e�etive on unstru-tured problems. Gauss-Seidel does however have some attrative properties, namely: fast onvergene,no global ommuniation (ie, no dot produts) and fewer ops per iteration as one an inorporate aninitial guess naturally. This paper disusses an algorithm for parallelizing Gauss-Seidel for distributedmemory omputers for use as a multigrid smoother and ompares its performane with preonditionedonjugate gradients on unstrutured linear elastiity problems with up to 76 million degrees of freedom.Key words: unstrutured multigrid, algebrai multigrid, parallel graph algorithms, parallel Gauss-Seidel1 IntrodutionThe availability of large high performane omputers is providing sientists and engineers with the oppor-tunity to simulate a variety of omplex physial systems with ever more auray and thereby exploit theadvantages of omputer simulations over laboratory experiments. The �nite element method is widely usedfor these simulations. The �nite element method requires that one or several linearized systems of sparseunstrutured algebrai equations (the sti�ness matrix) be solved for stati analyses, or at eah time stepwhen impliit time integration is used. These linear system solves are the omputational bottlenek (one thesimulation has been setup and before the results are interpreted) as the sale of problems inreases. Diretsolution methods have been, and are still, popular beause they are dependable; however the asymptotiomplexity of diret methods is high in omparison to optimal iterative methods (ie, multigrid x2).One an unstrutured multigrid method has been implemented the seletion of the smoother and itsparameters (eg, number of smoothing steps, size of subdomains, drop toleranes) beomes a primary meansof optimizing the solution time. Additionally, a large majority of the time is spent in the smoother. Hene,the seletion and eÆient implementation of smoothers is of primary interest in optimizing the performaneof a multigrid solver.Conjugate gradients (CG) preonditioned with Jaobi, blok Jaobi or overlapping Shwarz has beenfound to be an e�etive smoother for problems in 3D linear elastiity [10, 4℄. It is well know that for modelproblems Jaobi smoothers, or more generally additive Shwarz smoothers, require damping. CG in e�etprovides this damping for unstrutured problems. The advantage of additive smoothers is that they areeasily parallelizeable; CG is also relatively easy to parallelize e�etively as all of the work is performed instandard numerial primitives (ie, matrix-vetor produts, dot produts, et.) whih have presumably beenoptimized for the mahine in use and are easily available. Inomplete fatorizations have been found to bee�etive smoothers [11, 6℄. They, however, require the seletion of parameters for �ll-in and/or shifting the�Sandia National Laboratories, MS 9417, Livermore CA 94551 (mfadams�a.sandia.gov). This paper is authored by anemployee(s) of the U.S. Government and is in the publi domain. SC2001 November 2001, Denver 1-58113-293-X/01/0011$5.00 1

matrix to maintain positiveness, but inomplete fatorizations are also useful smoothers. We do not haveaess to good inomplete fatorization implementations and we do not disuss them further.These preonditioned CG smoothers, in addition to inomplete fatorizations, are the only smoothersused, to our knowledge, on distributed memory mahines. Gauss-Seidel is, however, widely used in themultigrid ommunity beause� Better onvergene bounds an be proven for Gauss-Seidel than for damped Jaobi on model problems.� Gauss-Seidel works well on unstrutured problems without the need of piking a damping parameter.Gauss-Seidel has several additional attrative properties:� Gauss-Seidel has better PRAM omplexity as no dot produts are required. Future parallel omputerswill likely have slower networks (relative to proessor speed) than today and so Gauss-Seidel maybeome more advantageous in the future on large problems.� Krylov methods require that an expliit residual be alulated if an initial guess is provided (as ourswith full multigrid and half of the time with V-yle multigrid). This ost an be signi�ant as oneusually only performs a few iterations in a smoother and so the residual ost an not be amortizedwell.� Gauss-Seidel is stationary (unlike CG), this is an attrative property as multigrid theory is not wellestablished for non-stationary smoothers and stationary smoothers are required for GMRES whih isa popular Krylov method for unsymmetri problems.Gauss-Seidel is thus an attrative smoother and is used in serial and shared memory parallel omputing[18℄. Gauss-Seidel has not, however, been used on distributed memory omputers as it is not obvious howto parallelize it well. Note, it is natural to try inexat Gauss-Seidel (eg, proessor subdomain blok Jaobiwith Gauss-Seidel subdomain solver) and these have been found to be adequate for Poisson's problem (ie,1D elastiity) but require modi�ation to the multigrid interpolation [12℄, and thus it is not surprising thatwe have found that inexat Gauss-Seidel does not work for 3D elastiity (at least with our geometri andalgebrai multigrid methods). This paper presents a distributed memory unstrutured true Gauss-Seidelalgorithm that shows promise on 3D unstrutured elastiity problems with up to 76 million degrees offreedom.2 Multigrid introdutionThis setion provides a brief introdution to multigrid, de�ning terms and providing omments on the stru-ture of multigrid relevant to its implementation on high performane (ie, parallel) omputers for unstruturedgrid problems. Multigrid has been an ative area of researh for almost 30 years and muh literature anfound on the subjet [15℄. Multigrid is motivated by the observation that simple (and inexpensive) iterativemethods like Gauss-Seidel, damped Jaobi and blok Jaobi, are e�etive at reduing the high frequenyerror, but are ine�etual in reduing the low frequeny ontent of the error [7℄. These simple solvers arealled smoothers as they render the error smooth by reduing the high frequeny ontent of the error (atu-ally they redue high energy omponents of the error, leaving the low energy omponents whih are smoothin, for example, Poisson's equation with onstant material oeÆients). The ine�etiveness of simple it-erative methods an be ameliorated by projeting the solution onto a smaller spae, that an resolve thelow frequeny ontent of the solution in exatly the same way that the �nite element method projets theontinuous solution onto a �nite dimensional subspae to ompute an approximation to the solution. Multi-grid is pratial beause this projetion an be prepared and omputed reasonably heaply and has O(n)omplexity. The oarse grid orretion (the solution projeted onto a oarser grid) does not eliminate thelow frequeny error exatly, but it \deates" the low frequeny error to high frequeny error by removingan approximation to the low frequeny omponents from the error.Multigrid requires three types of operators: 1) the grid transfer operators (ie, the restrition and pro-longation operators, whih an be implemented with a retangular matrix R and P = RT respetively);2

2) the PDE operator, a sparse matrix, for eah oarse grid (the �ne grid matrix is provided by the �niteelement appliation); and 3) heap (one level) iterative solvers that an e�etively eliminate high frequenyerror in the problem. The oarse grid matrix an be formed in one of two ways, either algebraially to formGalerkin (or variational) oarse grids (Aoarse RAfineP) or, by reating a new �nite element problemon eah oarse grid (if an expliit oarse grid is available) thereby letting the �nite element implementationonstrut the matrix.Figure 1 shows the standard multigrid V-yle and uses a smoother x S(A; b), and restrition operatorRi+1 that maps residuals from the �ne grid spae i to the oarse grid spae i+ 1 (the rows of Ri+1 are thedisrete representation on the �ne grid of the oarse grid funtion spae of grid i+ 1).funtion MGV (Ai; ri)if there is a oarser grid i+ 1xi S(Ai; ri)ri ri �Axiri+1 Ri+1(ri) /* restrition of residual to oarse grid */xi+1 MGV (Ri+1AiRTi+1; ri+1) /* the reursive appliation of multigrid */xi xi +RTi+1(xi+1) /* prolongation of oarse grid orretion */ri ri �Aixixi xi + S(Ai; ri)else xi A�1i ri /* diret solve of oarsest grid */return xi Figure 1: Multigrid V-yle AlgorithmMany multigrid algorithms have been developed; the full multigrid algorithm is used in our numerialexperiments. One full multigrid yle applies the V-yle to eah grid, by �rst restriting the residual (b) tothe oarsest grid and applying a V-yle (simply a diret solve), interpolating the new solution to the next�ner grid as an initial guess, applying the V-yle to this �ner grid, interpolating to the next �ner grid andso on until the �nest grid is reahed. Multigrid is often used as a preonditioner for a (Krylov) iterativemethod; we use CG preonditioned with one full multigrid iteration in our numerial experiene.The reason for using multigrid is to insure that the onvergene rate is independent of the sale of theproblem and the ost of eah iteration, in oating point operations (ops), asymptotes to a onstant as thesale of the problem inreases. An additional attrative property of multigrid is that the solver has severaldistint parts that are essentially independent: the restrition/prolongation operators, the smoother, theKrylov method aelerator (the atual solver), multigrid algorithms suh as V-yles, F-yles, W-yles,and other standard multigrid infrastruture (ie, sparse matrix triple produts for algebrai oarse grids).The smoother an have an important impat on this ost, espeially on hallenging problems, and is theprimary parameter in optimizing the solve time for a partiular problem.3 Parallel Gauss-Seidel algorithmsGauss-Seidel is spei� type of multipliative Shwarz method [17℄. The algorithms disussed here aregeneral methods for the parallel implementation of multipliative Shwarz methods. That is, these methodsoperate on graphs that are derived from the matrix graph and the Shwarz subdomains (bloks). Given aset of, perhaps overlapping, vertex blok or lists (I ,J ,...) a graph is onstruted by oalesing the vertiesin eah list to one node of the graph. An edge exists between nodes I and J if there is an edge betweenthe �nite element nodes n1 j n1 2 I and n2 j n2 2 J . Our numerial experiments use 1) nodal blokGauss-Seidel (these graphs are idential to the graph of the �nite element mesh) and 2) non-overlappedShwarz subdomains. The atual equations only ome into play when the weights of the nodes are omputedfor load (work) balaning (in Equation 1 below) and in the appliation of Gauss-Seidel in the kernel of thealgorithm (\funtion Gauss-Seidel" in Figure 2). The rest of this paper works exlusively with the graph3

that is derived from the subdomains and the matrix graph so that a \node" may be a set of verties in the�nite element mesh.3.1 Algorithm IAdams presents methods for oloring �nite di�erene stenils so as to parallelize natural and Red/BlakGauss-Seidel [1℄ . These methods \pipeline" the omputations and are thus not useful when only a fewiterations are performed, but preserve the semantis of standard node orderings (whih we do not).A standard method to parallelize Gauss-Seidel on unstrutured meshes is to olor the nodes, proess thenodes of eah olor, send and reeive updated values, and proeeded with the next olor. Algorithm I, inFigure 2, is a distributed memory algorithm based on nodal oloring. Given a matrix A, vetor x with aninitial guess, vetor b right hand side, a graph of lists of equations and a graph oloring:for all olors Send x values needed by other proessors to proess olor Reeive x values needed for olor /* loose synhronization point */for all nodes (list of equations) n with olor Gauss-Seidel(n;A; x; b)funtion Gauss-Seidel(L;A; x; b) /* Gauss-Seidel kernel */for all equations i 2 L /* iterate list in reverse on bakward pass */t[i℄ b[i℄ /* bu�er vetor */for all equations j j j =2 L;A[i; j℄ 6= 0 /* line 4 */t[i℄ t[i℄�A[i; j℄ � x[j℄x[L℄ A[L;L℄�1 � t[L℄Figure 2: Algorithm I, a simple distributed memory Gauss-Seidel algorithmThere are two main problems with Algorithm I:� 3D unstrutured hexahedral �nite element meshes have about 12 or more olors (if vertex bloks areused). This requires many small messages and \loose" synhronization points whih are not well suitedfor ommon parallel mahines.� This algorithm is perhaps the optimal algorithm for maximizing ahe misses and hene minimizingop rates.3.2 A distributed memory unstrutured Gauss-Seidel algorithmOur algorithm takes advantage of properties of the proessor partitions that are ommon in parallel �niteelement problems. Namely, nodes are partitioned so as to minimize ommuniation (eg, by minimizing edgeuts) and hene produe highly onneted subdomains with many \interior" nodes. Observe that the workon interior nodes (that by de�nition do not have any edges with nodes on other proessors) an be used to\hide" the ommuniation required for the boundary nodes. A simple idea is to only olor boundary nodes(ie, loal nodes that are not interior nodes), and proess the interior nodes while waiting for results fromother proessors. But we an do better than that.Observe that most of the boundary nodes ommuniate with only one proessor, assuming that the pro-essor subdomains are reasonably large. Nodes that ommuniate with only one proessor an be proessedall at one (ie, do not have to be restrited to the nodal oloring). This will redued the number of messagessent and, as many ontiguous nodes are proessed at one, the order that these nodes are proessed in anbe optimized to minimize ahe misses and hene maximize op rates.Proessors need to be able to deide who should go �rst. This an be done by simply omparing proessorIDs, or by using a proessor oloring. The basi algorithm �rst olors the proessors and orders the olors,this provides an inequality operator for proessors. Good oloring (as opposed to the bad oloring provide byproessor IDs) is used to redue the worst ase parallel omplexity on oarse grids where proessor domains4

are small. Note, with one node per proessor, or nodes randomly partitioned to proessors, this algorithmdegenerates to Algorithm I. Next, eah proessor partitions its nodes into interior and boundary nodes asde�ned above.The boundary nodes are partitioned into nodes that ommuniate only with proessors that have higherolor (all these \Bot" nodes) and nodes that ommuniate only with proessors that have lower olor (\Top"nodes) and all of the rest (\Mid" nodes). Note, multigrid requires a symmetri smoother (to be a symmetripreonditioner for a symmetri Krylov method) so a multipliative smoother must be able to e�etivelyproess equations in reverse order as well as in the forward order. To run the algorithm bakward the Topnodes are relabeled Bot nodes and visa versa and the node lists are proessed in reverse order.Interior nodes are partitioned into two parts: \Int1" and \Int2" so as to satisfyjInt1j+ jTopj = jInt2j+ jBotj (1)where jLj is a measure of the ost (eg, ops) in applying Gauss-Seidel to the equations in the list L. \Int1"and \Int2" are further partitioned into two partitions eah: \Int1.a", \Int1.b", \Int2.a" and \Int2.b". Thispartitioning is seondary (our numerial experiments simply put all nodes in the \a" lists). The number ofnon-zeros in the equations are used as an approximate measure of the ost. Again, to run the algorithmbakward, Int1 nodes are swithed with Int2.Top and Bot nodes are further partitioned into groups that ommuniate with only one proessor sothat when an update is reeived all of the nodes that only depend on that one proessor an be proessedimmediately and are is taken to proess these nodes in reverse order on the bakward pass.Figure 3 illustrates these de�nitions with a diagram of the partitions of a 2D, four proessor, problemwith the proessor olors represented with integers (ie, 1,2,3,4).
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

���
���
���

���
���
���
���
���
���
���

���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Mid nodes

Bot nodes

2) Send to ’lower’

Interior 1 nodes

Interior 2 nodes

Top nodes

1) Send to ’higher’

3) Send ’mid’ (lower)

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����������������������

3 4

21Figure 3: Partitioning diagram for 2D mesh with four proessorsEah Mid node (n) is equipped with two lists of nodes: 1) all of the neighbor nodes that are higherthan n and 2) all of the neighbor nodes that are lower than n and a pointer to a node list (dependents)that is set at the beginning of eah iteration to point to the higher node list on a forward pass and thelower node list on a bakward pass. Ghost nodes on higher proessors are de�ned as higher nodes, ghostnodes on lower proessors are de�ned as lower nodes and neighbor \Mid" nodes on the same proessor areassigned a random number to determine whih list they belong to. Nodes are equipped with a ag done thatis initialized to false at the beginning of eah iteration and set to true in the Gauss-Seidel kernel.
5

With these de�nitions, and the Gauss-Seidel kernel from Figure 2, one Gauss-Seidel iteration is as follows:Send boundary x values to higher proessors /* Initial send */Gauss-Seidel(Int1:b; A; x; b)Reeive x values from lower proessors /* Initial reeive */Gauss-Seidel(Top;A; x; b) /* one proessor nodes an be folded into the previous reeive */Send boundary x values to lower proessorsGauss-Seidel(Int1:a; A; x; b)Reeive x values from higher proessorswhile 9n j n 2Mid; n:done = falseReeive boundary x updates and list of ghost nodesdo flag falsefor all n 2Mid; n:done = falseif 8n2 j n2 2 n:dependents; n2:done = trueGauss-Seidel(n;A; x; b) sets done ags to trueCahe updated boundary x valuesflag truewhile(flag)Send ahed boundary x values and list of ompleted nodes to neighbor proessorsGauss-Seidel(Int2:a; A; x; b) /* one proessor nodes are proessed after the others */Reeive boundary x updates for any remaining (undone) ghost nodesGauss-Seidel(Bot;A; x; b)Gauss-Seidel(Int2:b; A; x; b)Figure 4: Distributed memory unstrutured Gauss-Seidel algorithmNote, 1) the \Initial" send and reeive phase in Figure 4 an be omitted on the seond and subsequentiterations, 2) the list in the �rst line of the \Gauss-Seidel kernel" in Figure 2 must be iterated in reversewhen running the algorithm bakward, 3) the middle setion of this algorithm (the \while" loop that startson the 8th line) is essentially Algorithm I, and 4) low proessors without \Mid" nodes (eg, proessor 1 inFigure 5) an postpone the reeive on the 7th line of Figure 4 until the data is needed on the seond to lastline (the proessing of \Bot" nodes).Figure 5 shows a shemati time line for this algorithm for the model problem in Figure 3 with the \Intx"node list evenly divided into the \Intx.a" and \Intx.b" node lists.
����
����
����
����

����
����
����
��������
����
����
����

����
����
����
����

Mid nodes

Bot nodes

Interior 1 nodes

Interior 2 nodes

Top nodes

���
���
���

���
���
���

���
���
���

���
���
���

��������
��������
��������
��������

�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

������
������
������

������
������
������

�����
�����
�����
�����

����
����
����
����

�������
�������
�������

�������
�������
�������

���������
���������
���������

���������
���������
���������

������
������
������
������

������
������
������
������
������
������
������

������
������
������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����

������
������
������
������

Time

1

2

3

4 Figure 5: Time line of model 2D problem on a forward pass
6

Figures 6 and 7 show Vampir outputs of a 2,085,599 degrees of freedom (dof) problem run on 52 CrayT3E and 28 IBM PowerPC proessors [13℄. The olors on Figures 6 and 7 are similar to those in Figure 3:\Top" work is green, \Bot" work is magenta, the \Int1" work is turquoise, the \Int2" work is blue, \Mid"work is dark purple, and the time waiting in bloking MPI alls is in red. Note, all interior nodes are put inthe \a" lists, so that, for instane, eah proessors work ends with the \Bot" node work (magenta) instead ofthe \Int2.b" node work (blue) depited in Figure 5. These �gures indiate that we have deent algorithmieÆieny as we do not see too muh red areas where proessors are waiting for messages. This is promising,but these �gures only indiate that the algorithm an work (the numerial results in x5 will quantify this),and are not intended as evidene that the algorithm is e�etive. Note, the use of Vampir was invaluable indebugging this algorithm (as well as the ode), for instane, the form of Equation 1 was re�ned by �ndingperformane bottleneks that arise from less optimal versions of this equation (eg, jInt1j = jInt2j).
Process 0 2 2 2 3 5 129
Process 1 129 3 5 6 129
Process 2 129 2 2 2 3 4 4 5 6 129
Process 3 2 2 3 4 4 5 6 129
Process 4 129 2 2 2 2 3 79 4 5 6 129
Process 5 129 2 2 2 2 2 2 2 3 4 5 6 129
Process 6 2 3 4 79 5 6 129
Process 7 129 2 2 22 2 2 2 3 4 4 5 6 129
Process 8 129 2 2 3 4 4 79 79 5 6 129
Process 9 129 3 5 6 129
Process 10 129 2 2 2 2 2 2 2 3 5 129
Process 11 129 2 2 2 2 2 3 4 4 79 5 6 129
Process 12 129 2 2 2 2 2 2 2 2 3 5 129
Process 13 129 2 2 2 2 2 2 3 4 5 6 129
Process 14 129 2 3 4 79 79 5 6 129
Process 15 129 2 2 2 3 4 479 5 6 129
Process 16 129 3 5 79 6 129
Process 17 129 2 3 4 79 5 6 129
Process 18 129 2 2 2 2 2 2 2 2 3 4 5 6 129
Process 19 129 2 2 2 2 2 2 2 2 2 2 2 2 3 4 4 5 6 129
Process 20 129 3 5 79 6 129
Process 21 129 2 3 4 79 5 6 129
Process 22 129 2 2 2 22 3 79 4 5 6 129
Process 23 129 2 2 2 2 2 2 2 2 2 3 5 129
Process 24 129 2 2 2 3 4 4 79 5 6 129
Process 25 129 2 2 2 3 4 79 5 6 129
Process 26 129 2 3 4 79 79 5 6 129
Process 27 129 2 2 2 2 2 2 3 4 4 79 5 6 129
Process 28 129 3 5 79 6
Process 29 129 2 3 79 4 79 5 6 129
Process 30 129 2 2 2 2 3 4 5 6 129
Process 31 129 2 2 2 2 2 2 2 2 2 2 2 3 5 129
Process 32 129 2 3 4 79 5 6 129
Process 33 129 2 2 3 4 5 6 129
Process 34 129 2 2 2 2 3 4 5 6 129
Process 35 129 2 2 2 2 2 2 3 4 4 5 6 129
Process 36 129 2 2 3 4 4 79 79 5 6 129
Process 37 129 2 2 2 2 3 4 79 79 5 6 129
Process 38 129 2 2 2 2 3 5 129
Process 39 129 2 2 2 2 3 4 5 6 129
Process 40 129 3 5 79 79 6 129
Process 41 129 2 2 2 2 2 3 4 5 6 129
Process 42 129 2 2 2 3 4 5 6 129
Process 43 129 2 2 2 2 2 2 2 2 2 3 5 129
Process 44 129 2 2 3 4 79 5 6 129
Process 45 129 2 2 2 2 2 3 5 129
Process 46 129 2 2 2 2 3 79 4 5 6 129
Process 47 129 2 2 2 2 2 2 2 2 3 5 129
Process 48 129 2 2 2 2 2 3 5 129
Process 49 129 2 2 3 4 79 5 6 129
Process 50 129 2 2 3 79 4 79 5 6 129
Process 51 129 2 2 2 2 2 2 2 3 5 129

MPI
VT_API
G-S_Int_1b_(send_to_H)
G-S_Inf_(recv)
G-S_Int_1_(send_to_L)
G-S_IS_(send)
G-S_Int_2
G-S_Sup
G-S_Int_2b_+_end

5:11.855:11.85:11.755:11.75:11.655:11.6

parfeap.t3e.bpv: Global Timeline

VT_API
G-S_Int_1b_(send_to_H)
G-S_Inf_(recv)
MPI
G-S_Int_1_(send_to_L)
G-S_IS_(send)
G-S_Int_2
G-S_Sup
G-S_Int_2b_+_end

5

10

15

20

25

30

35

40

45

50

5:11.855:11.85:11.755:11.75:11.655:11.6

cc3_gs.t3e.bpv: Parallelism ViewFigure 6: Time line and parallelism for 2M dof problem with 52 Cray T3E proessors
7

Process 0 129 2 2 22 2 2 2 2 3 5 129

Process 1 129 22 108 2 3 4 5 6 129

Process 2 129 2 3 45 6 129

Process 3 129 3 5 6 129

Process 4 129 2 2 2 2 2 3 5 6 129

Process 5 129 2 2 2 2 2 3 5 129

Process 6 129 2 2 2 2 3 4 4 5 6

Process 7 129 3 5 79 79 6 129

Process 8 129 2 22 2 2 3 4 5 6 129

Process 9 129 2 2 3 4 79 79 5 6 129

Process 10 129 2 2 2 2 2 2 3 4 5 6 129

Process 11 3 5 6 129

Process 12 129 2 2 2 22 22 2 2 2 3 4 5 6 129

Process 13 129 2 2 2 2 3 4 79 79 5 6 129

Process 14 129 2 2 3 4 5 6 129

Process 15 129 3 5 79 79 6 129

Process 16 129 22 2 2 2 2 3 79 4 5 6 129

Process 17 129 2 2 2 3 79 4 5 6 129

Process 18 129 3 5 6 129

Process 19 129 108 2 22 3 4 79 79 79 79 5 6

Process 20 129 2 2 2 2 2 2 2 2 2 3 5 129

Process 21 129 2 2 2 2 3 79 4 5 6 129

Process 22 129 108 2 3 79 5 6 129

Process 23 129 3 5 6 129

Process 24 129 2 2 2 2 2 2 2 3 45 6 129

Process 25 129 2 2 2 3 79 4 5 6 129

Process 26 129 2 3 4 79 5 6 129

Process 27 129 3 5 79 6 129

MPI
VT_API
G-S_Int_1b_(send_to_H)
G-S_Inf_(recv)
G-S_Int_1_(send_to_L)
G-S_IS_(send)
G-S_Int_2
G-S_Sup
G-S_Int_2b_+_end

16:14.716:14.616:14.516:14.416:14.316:14.216:14.116:14.0

vt_trace.bpv: Global Timeline (16:13.891 - 16:14.76 = 0.87 s)

VT_API
G-S_Int_1b_(send_to_H)
MPI
G-S_Int_1_(send_to_L)
G-S_Inf_(recv)
G-S_IS_(send)
G-S_Int_2
G-S_Sup
G-S_Int_2b_+_end

2
4
6

8
10
12

14
16
18
20

22
24
26

28
16:14.716:14.616:14.516:14.416:14.316:14.216:14.116:14.0

cc3_gs.ibm.bpv: Parallelism ViewFigure 7: Time line and parallelism for 2M dof problem with 28 IBM PowerPC proessors
8

3.3 Algorithm harateristisOur algorithm utilizes properties of optimal partitioning of 3D �nite element problems and is e�etivebeause:� The partitioning that we an expet in pratie (ie, from ParMetis) are adequate and we use ParMetisto partition the oarse grids as well as the �nest.� Equation 1 an be satis�ed well with respet to ops and reasonably well with respet to time to proessthese ops (although we have observed some signi�ant variations of op rates on large problems onsome mahines).� Our proessor partitions are large enough, and our Shwarz subdomains are small enough, on the �nergrids so that only a small perentage of the nodes are proessed in the (Algorithm I like) \while" loopin Figure 4.� The dependeny paths for these \Mid" nodes are short (eg, maximum of 3 with ideal partitions, andonly for the \orner" nodes of proessor partitions, as opposed to 12 or more with Algorithm I) ifthe proessor subdomains are large enough. Additionally these proessor subdomains do not have tobe very large (eg, about 30 non-overlapped Shwarz subdomains, see Adams for an argument for thisproperty for the parallel maximal independent set problem [2℄).To further haraterize the properties of this algorithm we laim that our parallel Gauss-Seidel algorithmis perfetly parallel (ie, has 100% parallel eÆieny) for 3D problems under the following assumptions (withomments as to how pratial the assumption is):1. Perfet proessor load balaning (this is reasonable).2. Enough interior nodes to satisfy Equation 1 (easy if the proessor domains are large enough, harderwith Shwarz domains). This requires at least as muh work on the interior nodes as on the boundarynodes and any exess an be used to hide ommuniation as desribed in assumption 5 below.3. Optimal op rates (there an be signi�ant variations in op rates from proessor to proessor and theserial op rates are not optimal as disussed in our numerial results).4. Zero perent work done on \Mid" nodes (more true as the proessor subdomain size inreases).5. Instant ommuniation (obviously not true, but the large messages an be overlapped with omputa-tion). This assumption is only needed for messages between \Mid" nodes (eg, the one message betweenproessor 2 and 3 in Figure 5).These assumptions indiate the potential soures of ineÆieny. We an not prove these laims (in fatwe know that they are not true) and must rely on numerial experiments to demonstrate the (degree of)e�etiveness of this algorithm.

9

4 Parallel arhitetureA highly salable implementation of the algorithms and of a �nite element appliation are used to test themethods. The parallel �nite element system Athena (Figure 8) is a parallel �nite element program builton a serial �nite element ode (FEAP [9℄) and a parallel graph partitioner (ParMetis [14℄) and our solverPrometheus (Prometheus is freely available in a publily domain library [16℄). Prometheus an be furtherdeomposed into three parts:� General unstrutured multigrid support built on PETS [5℄ (Epimetheus in Figure 8)� Non-nested geometri multigrid method (Prometheus in Figure 8)� Aggregation multigrid methods (Atlas in Figure 8)Athena reads a large \at" �nite element mesh input �le in parallel, uses ParMetis to partition the �niteelement graph, and then onstruts a omplete �nite element problem on eah proessor. These proessorsub-problems are onstruted so that eah proessor an ompute all rows of the sti�ness matrix and entriesof the residual vetor, assoiated with verties that have been partitioned to the proessor. This negatesthe need for ommuniation in the �nite element operator evaluation at the expense of a small amount ofredundant work. Thus, these tests use general unstrutured software so that, even if the problems are notvery omplex, the solver is not taking advantage of any of their underlying struture.Expliit message passing (MPI) is used for performane and portability and all parts of the algorithmhave been parallelized for salability. Clusters of symmetri multi-proessors (SMPs) are targeted as thisseems to be the arhiteture of hoie for future large mahines. Clusters of SMPs are aommodated by �rstpartitioning the problem onto the SMPs and then the loal problem is partitioned onto eah proessor asdepited in Figure 8. This approah impliitly takes advantage of any inrease in ommuniation performanewithin eah SMP, though the numerial kernels (in PETS) are \at" MPI odes. Prometheus assumes thatthe provided �ne grid is partitioned well but repartitions the (internally onstruted) oarse grids withParMetis to maintain load balane.The parallel appliation of multigrid adds a log(n) term to the parallel omplexity as some proessorsmust remain idle on the oarsest grids on very large problems. Given the number of degrees of freedomper proessor and the number proessors in our numerial experiments the log(n) term is not signi�ant asmost of the ops are performed on grids that are \ative" on all proessors. But as problems get largerthis will beome more important. The number of proessors is redued on the oarsest grids when there arefew equations per proessor partiularly on mahines with poor ommuniation infrastruture. The reasonsfor this are two fold: 1) it is diÆult to implement the parallel onstrution of the oarse grid spaes tohave the exat serial semantis in the regions between proessors and 2) most mahines are not modeledaurately with the PRAM omplexity model (ie, the oarsest grids on large problems an atually run fasterif fewer proessors are used as the latenies in the dot produts an dominate). Our solver implementationthus, redues the number of ative proessors on the oarsest grids to try to keep a minimum of about 200equations per proessor.

10

Library

METIS
METIS

(memory resident) (memory resident)
FEAP fileFEAP file

FEAP input file

FEAP FEAP FEAP FEAP

ParMetis

ParMetisAthena Athena

Athena

materials file

file file file file

Partition to SMPs

Partition within each SMP

(p) (p) (p) (p)

(s)

solution script

Prometheus
Geometric MG (R)

Atlas
Algebraic MG (R)

Mat. Products (RAR’)
FE/AMG solver interface

Epimetheus

PETSc

FEAP

Figure 8: Code Arhiteture11

5 Numerial resultsTo evaluate the performane of parallel Gauss-Seidel one must �rst look at the serial performane. Onedisadvantage of Gauss-Seidel is that it is not easy to use standard numerial kernel odes (eg, PETS'smatrix vetor produt), thus requiring that the Gauss-Seidel kernels be hand oded. The work in the Gauss-Seidel kernel is similar to the work of a matrix-vetor produt and thus we would hope to be able to ahievesimilar performane. There are two primary di�erenes, however, between the Gauss-Seidel kernel in ouralgorithm and a matrix-vetor produt:� The Gauss-Seidel kernel must work on a subset of the rows in the matrix, in several stages, andthe order of the operations must be done arefully to maintain the \multipliative" semantis. Forinstane, PETS sends messages, then omputes with the diagonal proessor blok of the matrix, thenreeives messages and then omputes with the o�-diagonal proessor blok to optimize performane.The Gauss-Seidel kernel does not have this freedom.� The Gauss-Seidel kernel must skip the diagonal blok of the equations in eah \node", thus requiringa test in the inner loop (line 4 in \funtion Gauss-Seidel" in Figure 2). This test is a simple \if" test inthe nodal blok ase but is more omplex in the more general ase (ie, Shwarz bloks). This additionalomplexity is reeted in the \blok Gauss-Seidel" op rates in Table 1.Table 1 shows the per proessor Mop rates (using one or two proessors), on the �ne grid of the 79,679 dofproblem desribed in x11 for: 1) theoretial peak, 2) PETS's matrix-vetor produt, 3) blok Gauss-Seidel(about 42 verties, 126 equations, per blok) and 4) nodal blok Gauss-Seidel.Mahine Peak Mat-Ve blok Gauss-Seidel nodal G-S (% of Mat-Ve)Cray T3E 950 88 27 46 (52 %)IBM SP PowerPC 634 36 21 31 (82 %)IBM SP Power3 1500 151 46 115 (76 %)Intel (Sandia Red) 200 41 22 34 (83 %)Compa (DEC alpha) 880 58 24 36 (62 %)Sun Enterprise 10K 666 30 16 25 (83 %)Table 1: Mahine performane (Mops/se)The serial ineÆienies shown in Table 1 are aused by several fators suh as there is extra bookkeepingrequired to implement the algorithm (espeially for blok Gauss-Seidel as desribe above), there are auxiliarydata strutures required that may ause ahe onits with the primary data and this algorithm ditates anode ordering that is not the same as the native matrix. That is, this algorithm preludes running straightthrough the matrix, or vertially partitioning the matrix, as an be done in a matrix vetor produt. ThisineÆieny ould be redued by making a separate opy of the matrix - without the diagonal blok - in theorder of the (forward pass of the) algorithm to get better op rates, this would require more storage and wehave not tested this approah.5.1 Shell problemThis problem is a \wing" with fully lamped boundary ondition at the base and a uniform load down onthe under side of the wing. The wing is meshed with four node quadrilateral shell elements, with thiknessof 12000 times the length of the wing, has 2,248,470 degrees of freedom and four internal sti�ener plates. Thislinearized sti�ness matrix has a ondition number of about 1:0 �109. Figure 9 shows the deformed mesh withthe �rst priniple stress of a 49,980 dof version of the problem.Conjugate gradients (CG) is used as the solver, preonditioned with one iteration of full multigrid.Three smoothers are tested: One pre and post smoothing step with 2248 Shwarz subdomains of 1) CGpreonditioned with blok Jaobi (additive Shwarz), 2) blok Gauss-Seidel (multipliative Shwarz) and3) one pre and post smoothing steps of nodal Gauss-Seidel. The Shwarz subdomains are onstrutedwith METIS with about 1000 equations per blok. The hoie of number of smoothing step was made by12

 2.60E+02

 5.17E+02

 7.75E+02

 1.03E+03

 1.29E+03

 1.55E+03

 3.16E+00

 1.80E+03

 PRIN. STRESS 1

Current View
Min = 3.16E+00
X = 5.00E+01
Y = 2.98E+00
Z =-6.23E+00
Max = 1.80E+03
X = 0.00E+00
Y = 0.00E+00
Z = 2.00E+00

 Time = 0.00E+00Figure 9: Wing deformed shapeseleting the number, for eah smoother, that performed best. Smoothed aggregation algebrai multigridis used [18, 3℄, with a relative residual tolerane of 10�6. Figure 10 (left) shows the residual history ofthis problem in units of the time for one matrix-vetor produt on the �ne grid. Figure 10 (right) showsthe the time for the 1) \mesh setup" (eg, oarse grid onstrution), 2) the \matrix setup" (eg, subdomainfatorizations and oarse grid operator onstrution) and 3) the \solve" time (ie, time in the CG solver), on32 PowerPC proessors.

0 2000 4000 6000 8000 10000 12000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Time (MatVec on fine grid)

R
el

at
iv

e
re

si
du

al

Relative residual history (wing)

CG/block Jacobi
block Gauss−Seidel
nodal Gauss−Seidel

1 2 3
0

100

200

300

400

500

600

700

800

900

CG/block Jacobi, block Gauss−Seidel, nodal Gauss−Seidel

T
im

e
(s

)

Total solve times (wing)

Mesh setup
Matrix setup
Solve for "x"

Figure 10: Residual history vs. solve times (left), and sum of mesh setup, matrix setup and solve times(right), on 32 PowerPC proessorsThis data shows that all three smoothers provide remarkably similar performane.13

5.2 Salability studiesThis test problem is a series of thin onentri spheres enlosed in a \soft" material (with symmetri boundaryonditions so that only one otant need be modeled). The sphere is omposed of seventeen alternating layersof hard and soft materials; Table 2 shows a summary of the onstitution of the two material types.Material Elasti modulus Poisson ratiosoft 10�4 0:49hard 1 0:3Table 2: MaterialsThe loading and boundary onditions are an imposed uniform displaement (down), on the top surfae.The mesh is parameterized for these salability studies. Eah suessive problem has one more layer ofelements through eah of the seventeen shell layers, with a similar re�nement in the other two diretions,and in the outer soft domain. The problems range in size from 80K to 76M degrees of freedom. Figure 11shows the smallest version of the problem with 79,679 dof.
-3.90E+00

-7.91E-01

 2.32E+00

 5.43E+00

 8.54E+00

 1.16E+01

-7.01E+00

 1.48E+01

 PRIN. STRESS 1

Current View
Min = -6.86E+00
X = 2.96E-01
Y = 0.00E+00
Z = 7.45E+00
Max = 1.48E+01
X = 4.11E-16
Y = 6.71E+00
Z = 2.99E+00

 Time = 2.02E+00Figure 11: 79,679 dof onentri spheres problemConjugate gradients (CG) is used as the solver, preonditioned with one iteration of full multigrid. Onepre and post smoothing step is used for 1) CG preonditioned with blok Jaobi (additive Shwarz), 2)blok Gauss-Seidel (multipliative Shwarz) and 3) nodal blok Gauss-Seidel. The bloks for blok Jaobiand blok Gauss-Seidel are onstruted with METIS with about 125 equations per blok. The hoie of onesmoothing step was made by seleting the number, for eah smoother, that performed best on the 640K dofversion of this problem. Two unstrutured multigrid methods will be used for these studies:� Non-nested geometri multigrid [4℄.� Smoothed aggregation algebrai multigrid [18, 3℄.All solves use a relative residual tolerane of 10�6.5.2.1 IBM SPThe number of proessors used is seleted to keep about 80K dof per proessor, from one to 960 proessorson an IBM PowerPC luster. Due to signi�ant variation in the op rate on this mahine from one run tothe next, espeially on larger problems, the best results are shown from several runs of eah problem - exeptfor the 960 proessor ase where, due to lak of aess to the mahine, we were limited in the number ofexperiments that we ould perform and at press time were not able to run one test. Updated versions of thispaper will be available on my web page [16℄. Figure 12 shows the iteration ounts (left), Mop rate (right),and Figure 13 shows the solve times for the three smoothers and the two multigrid methods.14

10
0

10
1

10
2

0

10

20

30

40

50

60

Processors − IBM Blue Pacific

Ite
ra

tio
ns

Iterations (rtol=10−6), 80K per processor

Geometric MG − Gauss−Seidel
Geometric MG − block G−S
Geometric MG − CG/block Jacobi
Sm. agg. MG − Gauss−Seidel
Sm. agg. MG − block G−S
Sm. agg. MG − CG/block Jacobi

10
0

10
1

10
2

0

5

10

15

20

25

30

35

Processors − IBM Blue Pacific

M
flo

ps
/s

ec
 p

er
 p

ro
ce

ss
or

Mflop/sec/proc. (rtol=10−6), 80K per processor

Geometric MG − Gauss−Seidel
Geometric MG − block G−S
Geometric MG − CG/block Jacobi
Sm. agg. MG − Gauss−Seidel
Sm. agg. MG − block G−S
Sm. agg. MG − CG/block Jacobi

Figure 12: Iteration ounts and op rates on an IBM PowerPC luster

10
0

10
1

10
2

0

100

200

300

400

500

600

700

800

900

1000

Processors − IBM Blue Pacific

S
ol

ve
 T

im
e

(s
ec

)

Solve Time (rtol=10−6), 80K per processor

Geometric MG − Gauss−Seidel
Geometric MG − block G−S
Geometric MG − CG/block Jacobi
Sm. agg. MG − Gauss−Seidel
Sm. agg. MG − block G−S
Sm. agg. MG − CG/block Jacobi

Figure 13: Total solve times on an IBM PowerPC lusterThe onvergene rate (ie, the inverse of the number of iterations, Figure 12, left) is best for the blokGauss-Seidel as is expeted as Gauss-Seidel has better onvergene properties than damped Jaobi on modelproblems, and the onvergene rate is about the same for the nodal Gauss-Seidel and the CG/blok Jaobi.We have as high as 31% parallel eÆieny for the op rates (ie, 10 Mops per proessor on 960 proessorsvs. 32 Mops on one proessor for smoothed aggregation multigrid with nodal Gauss-Seidel smoothing).The ultimate parallel eÆieny (solve time on one proessor divided by solve time on the largest run) is ashigh as about 44%, for geometri multigrid with nodal Gauss-Seidel smoothing from one to 960 proessors.There is signi�ant deterioration in the op rate for smoothed aggregation with the two blok smoothers,on the larger problems. We believe that this is due to ahe e�ets; smoothed aggregation uses more memorythan geometri multigrid beause the interpolation operators are quite large (about one third the size of thesti�ness matrix). This ombined with the extra memory needed for the blok smoothers inreases pressureon the ahe (the IBM has about 1Gb of usable memory per four proessor node and our total program is15

using all available memory as reported by the \jr" ommand at LLNL and is paging. We do not believe thatthere is paging within the solve, but there may be some at the beginning of the solve). This deterioration inop rates is probably exaerbated by a tendeny for performane on this mahine to degrade after a rebootas the problem is most pronouned on the larger problems. This performane degradation is due to memorymanagement issues (as observed by us and others aording to the LLNL support sta�); we were not ableaess a freshly rebooted mahine at press time.5.2.2 ASCI RedThe number of proessors used is seleted to keep about 40K dof per proessor (less than the IBM for lakof memory), from two to 1920 proessors on the ASCI Red mahine at Sandia National Laboratory. Figure14 shows the iteration ounts (left), Mop rate (right), and Figure 15 shows the solve times for the threesmoothers.

10
1

10
2

10
3

0

10

20

30

40

50

Processors − ASCI Red

Ite
ra

tio
ns

Iterations (rtol=10−6), 40K per processor

Geometric MG − Gauss−Seidel
Geometric MG − block G−S
Geometric MG − CG/block Jacobi

10
1

10
2

10
3

0

5

10

15

20

25

30

35

40

Processors − ASCI Red

M
flo

ps
/s

ec
 p

er
 p

ro
ce

ss
or

Mflop/sec/proc. (rtol=10−6), 40K per processor

Geometric MG − Gauss−Seidel
Geometric MG − block G−S
Geometric MG − CG/block Jacobi

Figure 14: Iteration ounts and op rates on ASCI RedFrom this data we notie that onvergene rate (ie, the inverse of the number of iterations) is about thesame for the nodal Gauss-Seidel and the CG/blok Jaobi and best for the blok Gauss-Seidel as in the IBMresults, as expeted. We have about 33% parallel eÆieny for the op rates on the Gauss-Seidel smoothers(eg, 9 Mops per proessor on 1920 proessors vs. 27 Mops per proessor on two proessors). The ultimateparallel eÆieny (solve time on one proessor divided by solve time on the largest run) is about 70% forgeometri multigrid with Gauss-Seidel smoothing.6 ConlusionWe have shown that Gauss-Seidel an be e�etively implemented and used as a multigrid smoother ondistributed memory omputers and an provide a viable alternative to preonditioned onjugate gradientsfor unstrutured �nite element problems, provided that there are enough equations on eah proessor. Anatural optimization, that we have not investigated, is to use Gauss-Seidel on the �nest grids, where itperforms best in terms of op rates, and preonditioned onjugate gradients on the oarsest grids withperhaps an inrease in smoothing steps or larger Shwarz subdomains to balane the superior onvergeneproperties of Gauss-Seidel. The stationary harater of Gauss-Seidel is also very valuable for non-symmetriproblems. We have thus added a valuable resoure to the available tools for multigrid solvers on distributedmemory mahines. 16

10
1

10
2

10
3

0

20

40

60

80

100

120

140

160

180

200

Processors − ASCI Red

S
ol

ve
 T

im
e

(s
ec

)

Solve Time (rtol=10−6), 40K per processor

Geometric MG − Gauss−Seidel
Geometric MG − block G−S
Geometric MG − CG/block JacobiFigure 15: Total solve times on ASCI RedFuture work is to improving the serial performane of the Gauss-Seidel kernel. Some potential areas toinvestigate are:� Further minimize the data strutures used during the Gauss-Seidel solve.� Improved node orderings (within node partitions) to optimize ahe performane [8℄.Additionally, the stati partitioning, that uses Equation 1, to balane the work on eah side of the Midnode work ould be replae with a dynami partitioning that measures wait time, in the Mid setion of thealgorithm in Figure 4, and moves nodes between the Int1:a and Int2:a partitions to minimize these waittimes and thus aommodate nonuniform ommuniation osts and other forms of load imbalane.Aknowledgments. I would like to thank the reviewers for their many helpful suggestions. I wouldlike to thank the many people that have ontributed libraries to this work: R.L. Taylor for providing FEAP,the PETS team for providing PETS, George Karypis for providing ParMetis/METIS. I would also liketo thank Livermore National Laboratory for providing aess to its omputing systems and to the sta� ofLivermore Computing for their support servies. Lawrene Berkeley National Laboratory for the use of theirCray T3E, and their helpful support sta� - this researh used resoures of the National Energy ResearhSienti� Computing Center, whih is supported by the OÆe of Energy Researh of the U.S. Department ofEnergy under Contrat No. DE-AC03-76SF00098. Sandia is a multiprogram laboratory operated by SandiaCorporation, a Lokheed Martin Company, for the United States Department of Energy under ontratDE-AC04-94AL85000.Referenes[1℄ Loye M. Adams and Harry F. Jordan. Is SOR olor-blind? SIAM J. Si. Statist. Comput., 7(2):490{506, 1986.[2℄ M. F. Adams. A parallel maximal independent set algorithm. In Proeedings 5th opper mountainonferene on iterative methods, 1998.[3℄ M. F. Adams. Evaluation of three unstrutured multigrid methods on 3D �nite element problems insolid mehanis. Tehnial Report UCB//CSD-00-1103, University of California, Berkeley, 2000.17

[4℄ M. F. Adams. Parallel multigrid solvers for 3D unstrutured �nite element problems in large deformationelastiity and plastiity. International Journal for Numerial Methods in Engineering, 48(8):1241{1262,2000.[5℄ S. Balay, W. D. Gropp, L. C. MInnes, and B. F. Smith. PETS 2.0 users manual. Tehnial report,Argonne National Laboratory, 1996.[6℄ V. E. Bulgakov and G. Kuhn. High-performane multilevel iterative aggregation solver for large �nite-element strutural analysis problems. International Journal for Numerial Methods in Engineering,38:3529{3544, 1995.[7℄ J. Demmel. Applied Numerial Linear Algebra. SIAM, 1997.[8℄ C. C. Douglas, J. Hu, M. Iskandarani, M. Kowarshik, U. R�ude, and C. Weiss. Maximizing ahememory usage for multigrid algorithms. In Multiphase Flows and Transport in Porous Media: State ofthe Art, pages 124{137. Springer, Berlin, 2000.[9℄ FEAP. www.e.berkeley.edu/�rlt.[10℄ Y. T. Feng, D Peri, and D. R. J. Owen. A non-nested multi-grid method for solving linear and nonlinearsolid mehanis problems. Compute. Meth. Meh. Engng., 144:307{325, 1997.[11℄ J. Fish, V. Belsky, and S. Gomma. Unstrutured multigrid method for shells. International Journal forNumerial Methods in Engineering, 39:1181{1197, 1996.[12℄ V.E. Henson and U.M. Yang. BoomerAMG: A parallel algebrai multigrid solver and preonditioner.Tehnial Report UCRL-JC-139098, Lawrene Livermore National Laboratory, 2000. To appear inApplied Numerial Mathematis.[13℄ http://www.pallas.de/pages/vampir.htm. Vampir 2.5 - visualization and analysis of mpi programs.[14℄ G. Karypis and V. Kumar. Parallel multilevel k-way partitioning sheme for irregular graphs.ACM/IEEE Proeedings of SC96: High Performane Networking and Computing, 1996.[15℄ MGNet. www.mgnet.org.[16℄ Prometheus. www.s.berkeley.edu/�madams.[17℄ B. Smith, P. Bjorstad, and W. Gropp. Domain Deomposition. Cambridge University Press, 1996.[18℄ P. Vanek, J. Mandel, and M. Brezina. Algebrai multigrid by smoothed aggregation for seond andfourth order ellipti problems. In 7th Copper Mountain Conferene on Multigrid Methods, 1995.

18

